

Appearance

Low temperature sealing glass with gray color in powder form.

Chemical Composition

Zinc oxide (ZnO)
Bismuth oxide (Bi₂O₃)
Zinc oxide (ZnO)
Boron oxide (B₂O₃)
Aluminum oxide (Al₂O₃)
Silicon oxide (SiO₂)

Physical Properties

Specific Gravity	4.6 (g/cm ³)
Glass Transition Temperature (by dilatometry)	490 ± 10 °C
Softening Temperature (T _d)	521 ± 10 °C
Coefficient of Thermal Expansion	6.0 – 7.8 x 10 ⁻⁶ /°C (100 - 400 °C)

Recommended Firing Conditions

Ramp to 560 - 590 °C and hold for 1 - 2 hours.
Heating or cooling rate: 3 to 10 °C/min

Applications

Operational Temperature: up to 400 °C

The typical application of GL2017 sealing glass is to seal ceramics and metals at high temperatures. Common applications of sealing glass include solid oxide fuel cells (SOFCs), solar cells, sodium ion batteries, high-temperature sensors, and other sealing, bonding, or coating applications.

Technical information, recommendations, and other statements contained in this document or provided by MO SCI personnel are based on tests or experience that MO SCI believes are reliable, but the accuracy or completeness of such information is not guaranteed. Such information is intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information.